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ABSTRACT
Mobile humanoid robots have the ability tomove to a user’s location
and engage them in persuasive multi-modal dialog to promote
health behavior change. We conducted a randomized two-factor
experiment to evaluate the effect of having a robot use mobility
and nonverbal behavior (deictic pointing gestures) without speech
on influencing user food choices. We also evaluated whether trust-
building dialog with the robot impacted food choice persuasion
as a second, independent factor. In a study with 23 participants,
we found that robot pointing at healthy foods did lead to better
dietary choices and that trust-building dialog led to increased self-
reported trust in the robot. However, there were no effects of trust
on persuasion or other interaction effects of the two factors.

CCS CONCEPTS
• Computer systems organization → Embedded systems; Re-
dundancy; Robotics; • Networks→ Network reliability.

KEYWORDS
Persuasion, Health Behavior Change, Trust, Working Alliance, Cu-
ing, Gesture

ACM Reference Format:
<author information removed for blind review>. 2018. Influencing Health
Decisions using Robot Counseling, Mobility, and Gesture. In Woodstock ’18:
ACM Symposium on Neural Gaze Detection, June 03–05, 2018, Woodstock, NY .
ACM, New York, NY, USA, 9 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Health behavior such as poor diet, physical inactivity, and tobacco
use are the leading risk factors for disability in the US, and poor
diet alone is associated with 26% of deaths [30]. Helping individuals
change their health behavior is a complex undertaking that has
spawned entire disciplines and industries.

Although much of behavioral medicine is oriented to changing
health attitudes and habits through passive messaging or episodic
counseling [15], interventions that can provide information and
motivation at the time and place a person is making a health de-
cision arguably have the greatest opportunity for impact. Mobile
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Figure 1: In this study, we evaluate how nonverbal gestures
and trust building can influence dietary health decisions.

humanoid robots may be ideal for performing in this role, given
their ability to move to a person’s location, counsel them on their
decision, and use nonverbal behavior–such as hand gesture–to
inform and influence. Several studies to date have evaluated hu-
manoid robots in the role of health coach or counselor [42] [24], and
a few have evaluated the use of hand and arm gestures in demon-
strating exercise [10]. However, the use of mobility and gesture to
cue health-relevant objects in the user’s environment remains a
relatively unexplored area of investigation.

In this work, we explore the use of mobility and deictic (pointing)
gestures by a humanoid robot to indicate health-relevant objects
in a person’s environment at the time and place they are making
a health decision. Providing such in-context reminders–referred
to as “stimulus control” in the transtheoretical model of health
behavior change [31]–are among the most powerful techniques for
changing behavior. In order to motivate the robot’s behavior, and
establish trust and therapeutic alliance with individuals prior to
health decision events, we also explore the use of health counseling
by a robot in conjunction with its cuing behavior. Therapeutic
alliance is the trust and belief that a helper and helpee have in each
other as team-members in achieving a desired outcome, and has
been shown to be an important determiner of outcomes in all areas
of helping, including health counseling and therapy [21].

Our test domain is nutrition: helping individualsmaintain healthy
diets. Food choice is one of the most important health decisions
people make on a regular basis, and poor diet quality is one of the
top leading risk factors for death and disability in the US [30]. Fruit
and vegetable consumption alone plays a protective role in a large
number of cancers, and is associated with reduced risk for heart
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disease, stroke, and hypertension, yet only one in ten US adults
meet dietary guidelines [28]. Similar arguments can be made for
dietary fiber [1], consumption of sugar-free beverages [29], and
several other aspects of diet.

1.1 Theoretical Framework
While we are ultimately interested in long-term health behavior
change [31], we position our current study within the literature on
social influence and persuasion [6] [37]. The persuasiveness of a
message may be affected by the credibility of the source and by the
interpersonal relationship between source and recipient. Credibility
has further been shown to depend on assessments of the source’s
trustworthiness and expertise. The relationship between source
and recipient need not be extensive or long-lasting to influence
persuasion. For example, Burger et. al. showed that participants
were more likely to comply with a request from a confederate they
had interacted with previously, even if the previous interaction con-
sisted solely of sitting quietly in a room together for a short period
of time [4]. Howard showed that asking someone how they were
feeling, and acknowledging the response, led to greater compliance
with a charitable request [23].

1.2 Virtual Cafeteria Testbed
To explore our research questions in a context in which multiple
health decisions are made by a person in a short time span, we
constructed a “virtual cafeteria” (Figure 1), similar in concept to
those used by Ung, et al. [38]. These are physical simulations of
environments, such as cafeterias or pantries, stocked with fake
food of varying nutritional quality, in which study participants can
make food selections in order to evaluate the impact of different
interventions on food choice.

In our virtual cafeteria, participants are asked to assemble a num-
ber of lunches for others by selecting prepared food items from a
pantry. While they are making lunches, a mobile humanoid robot
can move within the cafeteria to counsel participants verbally or
point at food items in the pantry (“cuing”). In our initial experiment
we are primarily interested in determining the influence of these
cuing behaviors on compliance (whether a participant followed
the robot’s recommendation) and the overall dietary quality of the
lunches they assemble, given that the robot always recommends
healthy food options. We are also interested in exploring whether
an initial diet counseling conversation with the robot affects par-
ticipant trust and therapeutic alliance attitudes towards the robot,
and whether this initial counseling increases overall compliance
with cuing and the dietary quality of the assembled lunches.

1.3 Hypotheses
Given our theoretical frameworks for social influence and persua-
sion, we hypothesize that:
H1: The robot’s pointing at healthy food options at the time and
place a person is deciding among multiple choices (“cuing”) will
lead to healthier meals, as measured by the Healthy Eating Index
(HEI, a standard measure of diet quality).
H2: An initial diet counseling conversation with the robot will lead
to greater feelings of trust and therapeutic alliance which, in turn,

will boost overall compliance with cuing and healthier meals, as
measured by HEI.

2 RELATEDWORK
There is now a large body of literature on persuasive computing in
general [11] and persuasive robotics [36] in particular.

2.1 Persuasive robots
Persuasive robotics requires an understanding of how persuasion in
human-human interactions translates to human-robot interactions
[3].

Leveraging the Elaboration Likelihood Model, an established
model of persuasion in human-human interaction, Winkle et al.
[43] evaluated the strategies of goodwill, similarity, and credibility
on health behavior compliance, in having participants perform a
simple wrist rotation exercise.

Ham, et al., evaluated robot persuasion to improve attitudes
towards energy conservation, finding that social feedback is better
than factual feedback, and that negative feedback is better than
positive feedback for persuading behavior change [16][17].

Rincon, et al. [33] designed a social robot EmIR for assisting older
adults in their daily activities. The robot uses three strategies of
argumentation (analogy, popular practice, and expert opinion) to
persuade users to accept suggestions of activities and events. The
persuasion techniques implemented were based on the persuasion
architecture designed by Costa et al. [7] which provides a frame-
work for using persuasion to provide recommendations that fit the
user’s profile and interests.

Herse, et al. [20] explored how different embodiment types influ-
ence persuasion in recommendation systems. Through a vignette
study, they compared persuasion across two recommendation state-
ments (one related to the atmosphere and one about the staff) and
three hypothetical embodiment types (human, robot, information
kiosk) which aimed to persuade the participants to choose one of
two restaurant options.

Ghazali et al. [13] demonstrated that apparent gender congru-
ence between user and robot may lead to persuasion, but not nec-
essarily improve the trust between them. On the other hand, Siegel
and Breazeal [36] showed thatmale users weremore likely to donate
money to a female robot compared to a male robot, while women
demonstrated no preference. They also demonstrated that partici-
pants found robots of the opposite sex more credible, trustworthy,
and engaging.

Hashemian et al. [19] explored social power and persuasion in
HRI. Two humanoid robots that each employed a different social
power strategy (one used a reward strategy and the other estab-
lished itself as an expert on coffee) to encourage participants to
pick between one of three different coffee packs. Both approaches
were found to be equally persuasive. They also demonstrated that
the relationship between social power and persuasion is not linear
and that repeated persuasion attempts do not decay the perceived
value of the rewards when rewards are used as the social power
strategy. [18]
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2.2 Robot Persuasion through Nonverbal
Behavior

Persuasion has also been shown to be affected by an individual’s
use of nonverbal cues such as gaze and proximity [32].

Ju and Sirkin [25] explored the use of different mechanisms to
attract the attention of people passing by a public kiosk. They found
that the use of a waving robotic hand was better at persuading
participants to engage with the kiosk compared to an animated
hand on a display, demonstrating the enhanced persuasive ability
of physicality in robots.

Ham, et al., demonstrated that persuasion was increased when a
robot used a combination of both gazing and gesturing in a story-
telling task [16].

Ghazali et al. [12] investigated the use of social cues as persua-
sion strategies. In a series of studies, they looked at how cues such
as mimicry, praise, as well as emotional intonation, head move-
ments, and facial expressions, can be used to persuade people to
change their choices in trivial tasks. However, these studies relied
on robot speech as the primary modality for persuasion, and did not
investigate the persuasive effect of nonverbal behavior in isolation
[12] [14].

Chidambaram et al. [5] explored howmanipulations in the use of
a robot’s nonverbal cues (with and without the addition of speech
cues) affected the participant’s perceptions of the robot’s persua-
siveness and compliance with the robot’s suggestions. Participants
performed the Desert Survival Task [27] on a computer with a robot
providing suggestions using a combination of verbal and nonverbal
cues. The gestures used by the robot included pointing (deictic) ges-
tures to reference itself and the participant, metaphorical gestures,
to show a space containing an idea, and other kinds of gestures
where appropriate. The study demonstrated that nonverbal signal-
ing worked better than no signals and that nonverbal cues were
effective only when combined with speech cues.

3 EXPERIMENTAL DESIGN
We constructed an experimental testbed comprised of a virtual cafe-
teria in which a participant assembles multiple meals, providing the
opportunity for repeated trials experiments. We experimented with
different strategies that a mobile humanoid robot in the cafeteria
can use to persuade participant food selection choices.

In order to test our hypotheses, we designed an experiment with
one between-participants factor, namely ROBOT ROLE; and one
within-participants factor, namely CUING. Both of these factors
had two conditions. The two conditions of ROBOT ROLE factor
are Counselor and Bystander. For the experiments under Counselor
condition, the robot is framed as a nutrition coach in a counseling
session (§3.3) the participants went through with the robot prior
to the experimental task (§3.1). During the experiments in the
Bystander condition, the robot is introduced by the experimenter as
an assistant that can help with food selections, but the robot does
not talk directly to the participant. The two conditions of CUING
factor are Physical Cuing and No Cuing. During the trials under
Physical Cuing condition, the robot approaches the participant and
the pantry to physically cue a healthy food item on the pantry
shelves; and during the trials under No Cuing condition, the robot
executes idle animations in its “home” position (Figure 1,2) and does

Figure 2: Laboratory layout used during the experiments.

not take any action. In these settings, the Bystander and No Cuing
conditions serve as the control conditions for the experiment.

3.1 Meal Assembly Task
In our experiments, we asked participants to assemble lunch boxes
for 20 college students using the food items from the pantry located
within the lab space and to place the assembled meals on a serv-
ing area. Meal orders are delivered to the participants through a
touchscreen computer located within the lab space (Figure 2).

For each lunch box “trial”, participants receive orders which are
labeled either as “Specific Order” or “Chef’s Choice!” (Figure 3).
Specific Orders specify an exact set of food items and serve as
training for the participants. Chef’s Choice orders do not specify
any food and leave the meal decision to the participant. These
orders served as the experimental trials. For each experimental
trial, participants are instructed to assemble a meal of at least 4
food items. Through the experiment, each participant completes 4
training trials, 8 Physical Cuing trials, and 8 No Cuing trials.

In every experiment, the first trial is a Specific Order, and the
remaining 3 Specific Orders are randomized for each participant
to be distributed within the following 9 trials. Additionally, the
first Chef’s Choice order received by each participant is set to be
executed under No Cuing condition to prevent participants from
building anticipation for the robot to assist them in the following
trials. The remaining trials are randomized for each participant
throughout the experiment.

The experiment sessions were video and audio recorded.

3.2 Virtual Cafeteria Pantry
In our virtual cafeteria, we created a pantry which contains 45 food
items to assemble meals with. We used real food for long-shelf-life
items and fake food for perishable items. Included food items were
specifically selected to be the types that did not require any cooking
(eg. salad, sandwich, chips) or that could be consumed by adding
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hot water or heating up (eg. ramen, pasta, soup). Participants are
provided with a name tag under each item on the pantry shelves,
but are not provided with any nutritional information about the
items. Identical food items were clustered together and distributed
throughout 4 racks which had 3 shelves each. There were 2 to 4
clusters of items on each of the 12 shelves.

Sixteen (16) of the food items on the pantry are categorized as
being healthy choices in accordance with the nutritional indices
provided in the Food and Nutrient Database for Dietary Studies
(FNDDS,[39]) and Food Patterns Equivalents Database (FPED, [40]);
and with the food quality scoring scheme provided by the Healthy
Eating Index (HEI, [26]). These items are assigned to be randomly
chosen for each Physical Cuing trial and cued to the participant
by the robot. The healthy food items are distributed through the
pantry so that there is at least one healthy option on each shelf.
A complete list of food items included in our pantry is given in
Appendix A with their database identification numbers.

3.3 Mobile Humanoid Robot
As the intervention platform, we use a Pepper humanoid robot,
[34] (Figure 1). Pepper is a 120cm-tall robot with 19 degrees of
freedom which allows it to execute sophisticated gestures using
its head, arms and body. In addition to these nonverbal communi-
cation channels, it also has speakers and microphones for verbal
communication.

We control the robot with aWizard-of-Oz system, [8]. During the
experiments a research assistant, hidden in another room, controls
the robot’s behavior using a game controller and a user interface
designed for this study. The experimenter observes the experiment
through cameras and microphones placed in the virtual cafeteria
and through another custom user interface.

For the physical behavior of the robot, we designed 6 custom an-
imation sequences to cue food items located on the pantry shelves.
The first three of these sequences are used when the robot is in
a left-hand-side position with respect to the pantry and the par-
ticipant as shown in Figure 2. The other 3 sequences are mirror
images of the first three, and are used for the right-hand-side posi-
tioning. In each animation sequence, the robot cues a food item on
either the upper, the middle, or the lower shelf in the pantry. These
recommendation cues are composed of gazing and pointing at the
target food. Additionally, the robot’s position is aligned on a line in
front of the pantry by the experimenter using the remote controller
to be able cue the items placed along the shelves in different loca-
tions. This positioning itself serves as an additional communication
modality for cuing the target food item.

For each Physical Cuing trial, the experimenter drives the robot
from the home position (Figure 1 opaque robot) to the designated
position for the current target food (eg. Figure 1 transparent robot)
while the participant is waiting for the next order to appear on the
touchscreen computer. The experimenter then waits for the partic-
ipant to approach the pantry. Depending on how the participant
approaches the pantry, the experimenter drives the robot towards
left- or right-hand-side positioning with respect to the pantry and
the participant in order to minimize likelihood of collision. The ex-
perimenter then triggers the animation sequence that is associated
with the robot’s current configuration and the location of the target

food item on the shelves. Each full animation sequence follows the
order of robot behavior as listed below:

(0) Execute idle posture and animations until the sequence is
triggered

(1) Look at the face of the participant
(2) Look at the target food item on the shelf
(3) Lean forward and point at the target food item
(4) Look at the face of the participant
(5) Go back to the idle posture and animations
Once the participant complies with the robot and picks up the

target food, the robot is driven back to its home position until the
next Physical Cuing trial. If the participant does not comply, the
robot is triggered to execute the same animation sequence twomore
times until the participant complies with the food recommendation
or until the participant completes the current trial by serving the
current lunch box.

For the experiments in the Counselor condition, participants con-
duct a counseling session with the robot before the meal assembly
task starts. The counseling conversation with the robot is intended
to 1) build rapport, trust, and therapeutic alliance with the robot,
2) establish the nutrition expertise of the robot, and 3) establish
the role of the robot during meal assembly task. The conversation
consists of a brief greeting and a few turns of social chat, a review
of the current US guidelines for nutrition, a brief counseling dialog
in which the robot assesses the participant’s own dietary behavior
and motivation for change, a discussion of what the robot will be
doing during the meal assembly (“I will help you by occasionally
making healthy suggestions.”), and a statement of collaboration (“I
look forward to working with you. Let’s get to work!”). During
the dialog, the robot uses appropriate conversational nonverbal
behavior, including eye gaze and hand gesture. This dialog is also
controlled by the experimenter who observes the interaction from
a different room.

For the experiments in the Bystander condition, participants are
told that the robot can move around the room to “help you with
your food selections”, and that the robot “will not talk while you
are preparing your orders”.

3.4 Participant Task User Interface
We also developed a user interface for the participants to receive
orders through a touchscreen computer located within the virtual
cafeteria (Figure 1). This interface displays 1) current order number,
2) orderer’s name, 3) order type, 4) the list of ordered food items
(if present for the current trial), 5) a “soft” countdown timer of 3
minutes, and 6) a “next order” button to proceed to the next order
once the current lunch box is served. In Figure 3, an example frame
from this user interface is displayed. For the orderer names, we
created a name pool of 20 most common female and male names
in <location removed for blind review>. We sample 10 from each
gender and shuffle their order for each experiment. After receiving
a new order participants are displayed a “soft” countdown timer of
3 minutes such that exceeding the timer would not terminate the
current trial. We use this timer to discourage the participants from
spending too much time on orders. The background color of the
timer is switched to yellow once it reaches 1.5 minutes; and to red
once it reaches 10 seconds.
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Figure 3: A sample frame from the user interface used to
deliver orders to the participants. This particular frame is
for a training trial where the orderer specifies the food items
they request.

Before the participants are given their new order, they are shown
“Waiting for order” text accompanied by a blinking three dots load-
ing animation. We used a random delay between 5 and 15 seconds
to simulate asynchronous arrival of orders. This delay not only
served to improve the believability of the experience, but it also
provided the experimenter with the crucial time needed to navigate
the robot to its position during Physical Cuing trials.

The back-end of this user interface also handles randomized
factors such as participant order types, Specific Order meal lists,
food item to be cued by the robot, orderer names and delay dura-
tions. This information is also relayed to the wizard-of-oz control
computer to be logged and displayed to the experimenter.

3.5 Measures
In order to analyze the effects of ROBOT ROLE and CUING factors
on participants’ food choices and attitudes towards the robot, we
use a combination of quantitative measures. In Table 1, an overview
of these measures is given.

Our primary outcome measure for this study is the quantitative
quality of the assembled meals, which we computed for each trial
and each experiment. In order to score the quality of the assembled
meals, we used the Healthy Eating Index (HEI), [26], which provides
a meal quality assessment scheme that is independent of food quan-
tity. Using HEI, 14 nutritional indices (eg. whole grains, sodium,
saturated fats, etc.) are scored separately and summed up to obtain
a final score ranging from 0 (poor quality) to 100 (highest quality).
HEI scoring normalizes each individual index by total calorie intake.
Thus, the measure can be used independently of the quantity of
the meal combination to be scored. Our second quantitative mea-
sure is the participant compliance with the recommendation by the
robot, determined through video review of participant behavior.
We record compliance per trial (true/false) as well as computing
compliance rate per experiment (0%-100%).

In addition to collecting quantitative data during the experiments,
we administered self-report surveys pre- and post-experiment. The
pre-experiment survey includes standard demographics questions
and theMultiple Food Test-Choice questionnaire (MFT), [35], which
evaluates the healthy food choice performance of the participants
through an 18-item, multiple-choice scale. Each item in this scale
asks the participant to select one out of four food items whose

Table 1: Experiment measures

Min. Max.
Measure Score Score

Experiment logs
Healthy Eating Index (per-trial) 0 100

Healthy Eating Index (per-experiment) 0 100
Compliance (per-trial) False True

Compliance rate (per-experiment) 0% 100%
Surveys

Multiple Food Test-Choice†∗ 378 -153
Working Alliance Inventory-Bond 1 7

Trust in the Robot 1 8
Godspeed Questionnaire 1 7

Robot Attitude 1 7
(†): Measured in both pre- and post-experiment surveys.
(∗): Lower value indicates higher meal quality.

names and photographs are displayed under the items. The re-
sponses to each item can be interpreted in a 4-point scale (unhealthy-
very health) or by using the Nutrient Profile Scores (NPS), which is
provided in the survey toolkit. We use NPS values to evaluate the
choices of the participants. TheMFT questionnaire is also conducted
post-experiment in order to assess the effects of ROBOT ROLE and
CUING factors on the participants’ food preference tendencies.

In the post-experiment survey, we also collect responses to sev-
eral scales aimed to evaluate the (therapeutic) alliance between the
robot and the participants. We use the Working Alliance Inventory-
Bond scale, [22]; Godspeed questionnaire series, which measures
perceived robot anthropomorphism, animacy, likeability, intelli-
gence, and safety, [2]; Robot Attitude survey, which is a set of 8
single-item scales (Appendix B); and a composite Trust scale, [41].

3.6 Procedure
Participants were recruited from a social media site internal to
our institution, and were required to be 18 years old and native
speakers of English to participate. The study was approved by our
institution’s IRB, and participants were compensated for their time.

Participants were randomly assigned to either Counselor or By-
stander sessions as the condition of the ROBOT ROLE factor upon
enrollment. After arriving at the laboratory, they were given a brief-
ing session about the study, given a training session on the meal
order interface (§3.4), completed the experimental task, completed
a post-experiment survey, and were debriefed. Counselor condition
participants had a counseling session with the robot prior to start-
ing the experimental task. Each experiment took approximately 60
minutes.

4 RESULTS
We recruited 23 participants (16 female, 6 male; ages 21-41, 𝑀 =

25.9, 𝑆𝐷 = 4.2). One experiment was terminated due to technical
problems, resulting in 22 participants completing all study tasks,
with 10 in the Bystander condition and 12 in the Counselor condition.
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Figure 4: Results and the data distribution for the ANOVA
on per-trial HEI scores.

4.1 Effects on Primary Outcomes
In order evaluate the effects of the factors ROBOT ROLE and CU-
ING on per-trial HEI food quality scores, we used analysis of vari-
ance (ANOVA). This analysis considered the ROBOT ROLE as the
between-participant variable; and CUING as the within-participant
variable (Figure 4). ANOVA results showed significant positive
main effect of Physical Cuing on per-trial HEI scores (𝐹 (1, 20) =
6.940, 𝑝 = .0160). We found trending effects of the ROBOT ROLE
factor on HEI scores (𝐹 (1, 20) = 2.737, 𝑝 = .1136) in the mean values
of the data in favor of the Counselor condition.

HEI assesses the quality of a set of food items, and as larger quan-
tities of food will span a broader range of HEI indices, it can result
in more meaningful quality measurements. Thus, we also analyzed
HEI scores for the total food items each participant selected in the 8
Physical Cuing and 8 No Cuing trial conditions for each experiment.
Using the aggregate data, we ran another ANOVA. This analysis
demonstrated a significant positive main effect of Physical Cuing
(𝐹 (1, 20) = 9.707, 𝑝 = .0054) and a trending positive main effect of
Counselor (𝐹 (1, 20) = 3.019, 𝑝 = .0976) on HEI scores (Figure 5). We
did not find any interaction effects between the factors.

4.2 Effects on Compliance
During trials with Physical Cuing, overall participant compliance
was 63.0% (SD 33.7%); with 60.3% (SD 33.9%) in the Counselor con-
dition and 66.3% (SD 34.9%) in the Bystander condition. These com-
pliance rates are all significantly greater than chance (assuming a
comparison rate of 1/45 for random selection of the 45 food items),
single sample t(21)=8.46, p<.001.

In order to test the effect ROBOT ROLE factor on compliance rates,
we used independent means t-test. We did not find any significant
effect on compliance rates (𝑡 (19) = 0.405, 𝑝 = .3448).

Figure 5: Results and the data distribution for the ANOVA
on per-experiment HEI scores.

4.3 Effects on Robot Attitude
We tested ROBOT ROLE factor’s effect on attitude towards the robot
using independent samples Mann-Whitney U test for single-item
scales; and using independent means t-test for composite scales.
We found significant and marginal effects on several robot attitude
measures.

For the single-item scales, Counselor condition had significant
positive main effects on satisfaction (𝑈 = 94.0, 𝑝 = .025) and
perceived knowledgeability (𝑈 = 104.5, 𝑝 = .002). Additionally,
we found trending positive main effects on ease of interaction
(𝑈 = 89.0, 𝑝 = .051) and the naturalness of interaction (𝑈 =

88.5, 𝑝 = .059). For the composite scales, Counselor had signifi-
cant positive main effects on trust (𝑡 (20) = 2.334, 𝑝 = .0152) and
perceived safety (𝑡 (19) =, 𝑝 = .0277).

We did not find any effects on Working Alliance Inventory-Bond
scale.

4.4 Effects on Post-experiment Food Choice
Independent means t-test analysis has shown Counselor condition
had significant positive effect on post-experiment Multiple Food
Test-Choice scores (𝑡 (20) = 2.844, 𝑝 = .0100).

4.5 Effects of Attitude on Compliance
We analyzed the effects of self-reported post-experiment scales
of attitude toward the robot on per-experiment compliance rates.
For single-item scales, we computed Spearman’s correlation coeffi-
cient; and for composite scales, we computed Pearson’s correlation
coefficient. The analyses have shown significant and marginal pos-
itive correlations between compliance rate and likeability (𝜌 (20) =
0.443, 𝑝 = .0383), intention to work with (𝜌 (20) = 0.420, 𝑝 = .0516),
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perceived knowledgeability (𝜌 (20) = 0.378, 𝑝 = .0824), and rela-
tionship with the robot (𝜌 (20) = 0.3969, 𝑝 = .0674). We computed
Pearson’s correlation coefficient for the composite measures, and
did not find any significant effects.

4.6 Effects of Compliance on Primary Outcomes
We computed Pearson’s correlation coefficient in order to check for
effects of per-experiment compliance rate on HEI scores. Analysis
did not show any statistically significant effects.

5 DISCUSSION
We found that robot cuing – moving to and pointing at healthy
food items without talking – changed participant behavior and was
effective in influencing healthier food choices, supporting H1. We
also found that counseling by the robot, comprised of trust-building
and nutrition role-setting dialog, led to greater self-reported trust
in the robot by participants and improved food choice in the post-
test MFT measure (assessing choice of food for themselves in a
hypothetical task). However, the trust-building dialog only had a
trending effect on food choice in the meal assembly task, providing
only partial support forH2. In addition, trust-building did not affect
compliance, which we hypothesized to be the mediator between
our manipulations and healthy food choices.

Together, these results indicate that mobile humanoid robots can
be successfully deployed in user environments to influence health
behavior through proxemics and nonverbal behavior, in addition
to counseling.

A possible explanation for the observedweak effect of counseling
on food choice could be that trust and working alliance take more
time, possibly over several interactions, to have influence, although
other studies have demonstrated relational effects within the time
span of a single experimental session [4]. It could also be that cuing
simply has an overall much stronger effect that cannot be improved,
at least with the brief counseling the robot conducted. The coun-
seling also focused on participants’ food choices for themselves,
which could explain why there was an increase in MFT following
counseling, but not food choice performance when choosing meals
for others.

The lack of association between counseling and compliance, and
between compliance and food choice, may have several explana-
tions. Given the physical setup, participants may not have been able
to tell precisely what the robot was pointing at, but still assumed
the robot was communicating that it wanted them to pick some-
thing healthy, leading to low compliance but healthy food choice. If
true, this indicates that the mere presence of a robot, or imperfectly
executed deictic gestures, may still be effective at influencing health
behavior. Our measure of compliance – relying on reviewing and
coding participant behavior from low-resolution video – may also
have been error-prone, resulting in compliance results that were
inconsistent with other findings.

We also found that, while the counseling dialog led to significant
increases in trust in and perceived relational closeness with the
robot, it did not have a significant impact on the bond dimension of
working alliance. This could be due to several items in the alliance
measure being unrelated to trust and closeness, such as “The robot

and I understand each other.” and “I feel that the robot is not totally
honest about its feelings toward me.”

Overall, relative to theories of health behavior change and persua-
sion, we find that appropriate stimulus control [31] (cuing) does lead
to healthier behavior, but that establishing credibility, relationship,
and trust [6] [37] have a weaker effect, at least as operationalized
in our study.

5.1 Limitations
Our study has several limitations, beyond the small convenience
sample that may not be representative of the general population.
Our virtual cafeteria may lack ecological validity and the results
we find in this environment may not translate to other real-life
contexts, such as grocery shopping or home meal preparation. Our
use of fake food, while used in other nutrition studies [38], may
have caused participants to behave differently than if they were
choosing real food. Our single-session experiment likely suffers
from novelty effects, and may not reflect what would happen in
long-term repeated interactions. Finally, the use of a wizard-of-oz
setup may have resulted in robot behavior that is different (better
or worse) than a fully-automated system.

5.2 Future Work
There aremany important directions for extending this research.We
believe our virtual cafeteria is a great environment for evaluating a
range of health counseling and persuasion strategies by a mobile
robot, and future studies can be improved in many ways. The use
of speech and/or the display on the robot could be used to help
participants disambiguate items the robot is indicating, addressing
some of our issues with low compliance. Assessing user health
behavior after they leave the laboratory would address questions
about ecological validity and the transfer-ability of behavior change.
Inviting participants to engage in multiple experimental sessions
would address questions about longevity and durability of results.

Future explorations could evaluate the use of just-in-time per-
suasive dialog in conjunction with cuing, to see if it is even more
powerful at effecting persuasion than cuing alone. Knowledge of a
user’s health background and preferences could enable the robot
to be more intelligent and/or persuasive regarding its recommen-
dations. Finally, the robot could also use a wider range of verbal
and nonverbal behavior in referring to health-related objects in the
user’s environment [9].

6 CONCLUSION
Our experiment demonstrates the feasibility and positive impact
of having mobile humanoid robots influence healthy behavior by
moving in a user’s environment and indicating healthy choices
at the time a user is making a health-related decision. This work
moves beyond static robots that provide coaching to demonstrating
the affordances of mobility and physicality in user interaction. We
were able to demonstrate significant impacts even without the use
of speech or other communication by the robot while cuing.
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